
Security
Best Practices

Mobile Apps, Backend Systems, & Websites

Table

of contents

 Introduction

 Mobile App Security

 Backend Security

 Website Security

 Common Vulnerabilities & Their Prevention

 Advanced Security Practices

 Conclusion

Security Best Practices 01

In today’s digital age, security breaches are more frequent

and sophisticated than ever. Developers must prioritize

robust security measures to protect sensitive data and

build user trust. This e-book outlines essential practices to

secure mobile applications, backend infrastructures and

websites, covering common vulnerabilities, preventive

strategies and advanced tips to ensure a robust system.

Security Best Practices 02

 Introduction

2. Mobile App Security

2.1 - Secure Authentication

2.2 - Data Protection

2.3 - API Security

2.4 - Secure Code Practices

2.5 - Secure Communications

2.6 - Device Security Considerations

Security Best Practices 03

2.1 Secure Authentication

Multi-Factor Authentication (MFA):

Go beyond traditional passwords by requiring a second

authentication factor like biometrics (fingerprint or face

recognition) or OTPs.

Token-Based Authentication:

Use JWTs (JSON Web Tokens) or similar tokens, stored

securely in device-provided mechanisms like Keychain

(iOS) or Keystore (Android).

Session Expiry:

Ensure sessions have timeouts to prevent unauthorized

access if a device is left unattended.

Security Best Practices 04

Mobile

App Security

2.2 Data Protection

Encryption:

Use AES-256 for encrypting sensitive data

stored on devices. For data in transit, enforce TLS 1.2 or

above.

Local Storage:

Avoid storing sensitive data like passwords or tokens in

plaintext or insecure storage like Shared Preferences,

User defaults, async storage etc. Use encrypted storage

options.

Data Minimization:

Collect and store only what is absolutely necessary.

Keeping the important keys and elements on cloud like

AWS Secrets Manager.

2.3 API Security

API Gateway Security:

Apply rate limiting, IP whitelisting, and geo-blocking

where applicable.

Security Best Practices 05

Authorization

Use role-based access controls (RBAC) to restrict access

to sensitive data and functionalities. Ensure every API

endpoint requires authentication.

Validation:

Validate all client-sent data server-side to prevent

injection and tampering.

2.4 Secure Code Practices

Code Obfuscation:

Use tools like ProGuard or R8 to make reverse

engineering difficult.

Secrets Management:

Never hardcode API keys or sensitive information in your

code. Use environment variables or secure vault services

like AWS Secrets Manager.

Third-Party Libraries:

Regularly update and audit libraries to patch

vulnerabilities.

Security Best Practices 06

2.5 Secure Communications

SSL Pinning:

Pin certificates to your app to mitigate man-in-the-

middle attacks.

DNS Security:

Use DNSSEC to prevent DNS spoofing.

2.6 Device Security Considerations

Jailbreak/Root Detection:

Implement mechanisms to detect compromised

devices and limit app functionality if detected.

Secure Permissions:

Request only necessary device permissions and explain

their use to the user clearly.

Security Best Practices 07

3. BACKEND Security

3.1 - Authentication and Authorization

3.2 - Secure Database Practices

3.3 - Server Security

3.4 - Logging and Monitoring

3.5 - API Hardening

Security Best Practices 08

3.1 Authentication and Authorization

OAuth2.0/OpenID Connect:

Use these standards for secure user authentication and

token exchange.

RBAC & ABAC:

Implement role-based access control (RBAC) or attribute-

based access control (ABAC) to ensure least privilege.

3.2 Secure Database Practices

Injection Prevention:

Use parameterized queries and ORM frameworks to

guard against SQL injection.

Security Best Practices 09

Backend

Security

Encryption:

Encrypt sensitive fields such as passwords (use bcrypt

or Argon2) and sensitive data like PII or financial details.

Backup Security:

Encrypt database backups and store them securely in

restricted access locations.

3.3 Server Security

Firewall Configuration:

Use firewalls to monitor and control incoming and

outgoing traffic.

Access Controls:

Restrict SSH and administrative access to trusted IPs.

Use key-based authentication instead of passwords for

SSH.

Container Security:

If using Docker or Kubernetes, scan container images

for vulnerabilities and limit container permissions.

Security Best Practices 10

3.4 Logging and Monitoring

Centralized Logging:

Use centralized logging solutions like ELK Stack, Splunk

or AWS CloudWatch to aggregate logs.

Anomaly Detection:

Implement tools to detect unusual behaviors like

multiple failed login attempts or unauthorized access

patterns.

3.5 API Hardening

Rate Limiting and Throttling:

Prevent abuse by setting strict request limits on

sensitive endpoints.

Error Handling:

Avoid exposing sensitive information through error

messages.

Security Best Practices 11

4. Website Security

4.1 - Input Validation and Sanitization

4.2 - Secure File Handling

4.3 - Secure Cookies and Sessions

4.4 - Protection Against Attacks

4.5 - HTTPS and Certificates

Security Best Practices 12

4.1 Input Validation and Sanitization

Whitelist Input Validation:

Define strict rules for input values and reject anything

outside the acceptable range.

Output Encoding:

Sanitize outputs to prevent HTML or JavaScript injection.

4.2 Secure File Handling

File Validation:

Validate file type, size, and content before accepting

uploads.

Security Best Practices 13

Website

Security

Non-Executable Storage:

Store uploaded files in a directory where execution is

disabled to prevent malicious script execution.

4.3 Secure Cookies and Sessions

Cookie Flags:

Use HttpOnly, Secure, and SameSite flags on cookies to

prevent unauthorized access and cross-site attacks.

Session Management:

Use unique session tokens with short expiration times

and regularly regenerate them.

4.4 Protection Against Attacks

Anti-CSRF Tokens:

Implement anti-CSRF mechanisms to secure state-

changing requests.

Content Security Policy (CSP):

Define a CSP to restrict script execution from untrusted

sources.

Security Best Practices 14

CAPTCHA

Prevent automated bots from abusing your website

with CAPTCHAs

4.5 HTTPS and Certificates

TLS Everywhere:

Enforce HTTPS with HSTS headers to secure all traffic.

Regular Renewals:

Ensure SSL/TLS certificates are valid and up to date.

Security Best Practices 15

5. Common

Vulnerabilities and

Their Prevention

5.1 - Authentication Vulnerabilities

5.2 - Exposed Source Code or Configurations

5.3 - XSS (Cross-Site Scripting)

5.4 - SQL Injection

5.5 - Denial-of-Service (DoS)

Security Best Practices 16

5.1 Authentication Vulnerabilities

OTP Bypass:

Validate OTPs on the server and use secure random

generators.

Password Policy:

Enforce strong password policies with complexity

requirements.

5.2 Exposed Source Code or Configurations

Prevent Directory Exposure:

Configure servers to block access to .git directories or

.env files.

Security Best Practices 17

Common

Vulnerabilities

& Their

Prevention

Static Code Analysis:

Use tools like SonarQube to detect secrets or

misconfigurations in codebases.

5.3 XSS (Cross-Site Scripting)

Input Sanitization:

Use libraries to sanitize and encode input data.

CSP Enforcement:

Block inline scripts with a strict CSP

5.4 SQL Injection

Prepared Statements:

Always use parameterized queries.

Database Permissions:

Limit database access roles to only what the application

needs.

Security Best Practices 18

5.5 Denial-of-Service (DoS)

Auto-Scaling Infrastructure:

Use cloud-based tools like AWS Auto Scaling to handle

traffic spikes.

Load Balancers:

Distribute traffic and use WAF rules to block malicious

requests.

Security Best Practices 19

6. Advanced Security

Practices

6.1 - Zero Trust Architecture:

6.2 - Threat Modeling:

6.3 - Secure CI/CD Pipelines:

6.4 - Bug Bounty Programs:

Security Best Practices 20

6.1 Zero Trust Architecture:

Assume no component is secure and enforce continuous

verification.

6.2 Threat Modeling:

Regularly assess potential attack vectors using frameworks

like STRIDE.

6.3 Secure CI/CD Pipelines:

Use security scans and approvals in CI/CD pipelines to

detect vulnerabilities before production.

6.4 Bug Bounty Programs:

Additionally engage ethical hackers to uncover

vulnerabilities through controlled programs.

Security Best Practices 21

Advanced

Security

Practices

A secure application is the result of careful planning,

proactive measures and continuous improvement. By

adopting the strategies and best practices outlined in this

guide, developers can build robust systems that safeguard

user data and maintain trust

Security Best Practices 22

 Conclusion

